Bayesian shrinkage

نویسندگان

  • Anirban Bhattacharya
  • Debdeep Pati
  • Natesh S. Pillai
  • David B. Dunson
چکیده

Penalized regression methods, such as L1 regularization, are routinely used in high-dimensional applications, and there is a rich literature on optimality properties under sparsity assumptions. In the Bayesian paradigm, sparsity is routinely induced through two-component mixture priors having a probability mass at zero, but such priors encounter daunting computational problems in high dimensions. This has motivated an amazing variety of continuous shrinkage priors, which can be expressed as global-local scale mixtures of Gaussians, facilitating computation. In sharp contrast to the corresponding frequentist literature, very little is known about the properties of such priors. Focusing on a broad class of shrinkage priors, we provide precise results on prior and posterior concentration. Interestingly, we demonstrate that most commonly used shrinkage priors, including the Bayesian Lasso, are suboptimal in high-dimensional settings. A new class of Dirichlet-Laplace (DL) priors are proposed, which possess optimal concentration and lead to efficient posterior computation exploiting results from normalized random measure theory. Finite sample performance of Dirichlet-Laplace priors relative to alternatives is assessed in simulations.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

E-Bayesian Approach in A Shrinkage Estimation of Parameter of Inverse Rayleigh Distribution under General Entropy Loss Function

‎Whenever approximate and initial information about the unknown parameter of a distribution is available, the shrinkage estimation method can be used to estimate it. In this paper, first the $ E $-Bayesian estimation of the parameter of inverse Rayleigh distribution under the general entropy loss function is obtained. Then, the shrinkage estimate of the inverse Rayleigh distribution parameter i...

متن کامل

Classic and Bayes Shrinkage Estimation in Rayleigh Distribution Using a Point Guess Based on Censored Data

Introduction      In classical methods of statistics, the parameter of interest is estimated based on a random sample using natural estimators such as maximum likelihood or unbiased estimators (sample information). In practice,  the researcher has a prior information about the parameter in the form of a point guess value. Information in the guess value is called as nonsample information. Thomp...

متن کامل

Bayesian Wavelet Shrinkage

Bayesian wavelet shrinkage methods are defined through a prior distribution on the space of wavelet coefficients after a Discrete Wavelet Transformation has been applied to the data. Posterior summaries of the wavelet coefficients establish a Bayes shrinkage rule. After the Bayes shrinkage is performed, an Inverse Discrete Wavelet Transformation can be used to recover the signal that generated ...

متن کامل

Shrinkage Priors for Bayesian Prediction

We investigate shrinkage priors for constructing Bayesian predictive distributions. It is shown that there exist shrinkage predictive distributions asymptotically dominating Bayesian predictive distributions based on the Jeffreys prior or other vague priors if the model manifold satisfies some differential geometric conditions. Kullback– Leibler divergence from the true distribution to a predic...

متن کامل

Bayesian False Discovery Rate Wavelet Shrinkage: Theory and Applications

Statistical inference in the wavelet domain remains vibrant area of contemporary statistical research because desirable properties of wavelet representations and the need of scientific community to process, explore, and summarize massive data sets. Prime examples are biomedical, geophysical, and internet related data. In this paper we develop wavelet shrinkage methodology based on testing multi...

متن کامل

Comparing Undecimated Wavelet, Nonsubsampled Contourlet and Shearlet Transform for SAR Image Despeckling

Synthetic Aperture Radar (SAR) images suffer of multiplicative speckle noise, which damages the radiometric resolution of SAR images and makes the data interpretation difficult. Bayesian shrinkage in a transformed domain is a well-known method based on finding threshold value to suppress the speckle noise. This paper present a new approach to obtain the optimum threshold values for Bayesian shr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013